姓 名 |
阎艳 |
||
职 称 |
教授 |
√博导 √硕导 |
|
学院专业 |
万象城allwincity官网 |
||
办公地址 |
万象城allwincity官网一号教学楼336 |
||
邮 编 |
100081 |
||
邮 件 |
yanyan331@bit.edu.cn |
||
个人简介与研究方向 |
|||
个人简介: 阎艳,教授/博导,工学博士。研究方向为数字化设计与制造。 获北京市三八红旗奖章、教育部新世纪优秀人才支持计划,北京高校优秀德育工作者,教育部工业工程类专业教学指导委员会委员、工业知识与数据融合应用工信部重点实验室主任、相关部委先进制造领域专家、“复杂装备MBSE联盟”数字孪生及使能技术委员会主任委员。航天智能制造与工业软件(工信部)协同育人基地负责人。长期从事数字化设计制造技术的基础及应用研究,主持或参与基础科研、预先研究、民用航天、国家自然基金、国家重点研发计划、973项目等十余项;获省部级科技进步奖8项;获省部级教学成果奖2项;获授权发明专利20余项,作为主编、副主编出版教材3本,参编出版专著2本;在国内外重要学术刊物上发表学术论文百余篇。 研究方向:知识工程、优化设计与创新设计、智能决策。 招收方向:欢迎具有机械工程/工业工程/数学/计算机科学/软件工程等背景的同学报考硕士和博士研究生。 |
|||
代表性论文及研究项目 |
|||
一、科研论文
1. A function-based computational method for design concept evaluation; Advanced Engineering Informatics;2017(32):237-247; Jia Hao*, Qiangfu Zhao, Yan Yan. 2. A Review of Tacit Knowledge: Current Situation and the Direction to Go; International Journal of Software Engineering and Knowledge Engineering; 27(5): 727-748; Jia Hao*, Qiangfu Zhao, Yan Yan, Guoxin Wang. 3. An evolutionary computation based method for creative design inspiration generation; Journal of Intelligent Manufacturing; 30(4): 1673-1691;Jia Hao*, Yongjia Zhou, Qiangfu Zhao, Qing Xue. 4. Characterizing the EEG Features of Inspiring Designers with Functional Terms; International Conference on Human-Computer Interaction; 10901: 371-381; Qian Zhang, Jia Hao*, Qing Xue, Yu Yan. 5. Exploring the Impact of Functional Terms in Idea Generation in Design;International Conference on Computer in Engineering; 2018(12):1-13; Jia Hao*, Lu Wang, Ji Han, Dirk Schaefer. 6. Evolutionary Neural Network-based Method for Constructing Surrogate Model with Small Scattered Dataset and Monotonicity Experience;International Conference on Soft Computing and Machine Intelligence;2018(5):43-38.Jia Hao*, Wenbin Ye, Guoxin Wang, Liangyue Jia. 7. A rule-based method for automated surrogate model selection;Advanced Engineering Informatics;2020:45:101123; Liangyue Jia, Reza Alizadeh, Jia Hao*, Mistree Farrokh. 8. Design optimization by integrating limited simulation data and shape engineering knowledge with Bayesian optimization (BO-DK4DO); Journal of Intelligent Manufacturing; 2020, Jia Hao*, Mengying Zhou, Guoxin Wang. 9. Wang R, Wang G, Yan Y, et al. Ontology-based representation of meta-design in designing decision w orkflows[J]. ASME Journal of Computing and Information Science in Engineering, 2019, 19(1): 011003-19 10. Wang R, Nellippallil A B, Wang G, Yan Y, et al., Ontology-based uncertainty management approach in designing of robust decision workflows[J]. Journal of Engineering Design, 2019, 30: 726-757. 11. Li P, Ren Y, Yan Y, et al. Intelligent product-gene acquisition method based on K-means clustering and mutual information-based feature selection algorithm[J]. Artificial Intelligence for Engineering Design Analysis and Manufacturing, 2019, 33(4): 469-483. 12. Ming Z, Nellippallil A B, Yan Y, et al. PDSIDES—a knowledge-based platform for decision support in the design of engineering systems[J]. ASME Journal of Computing and Information Science in Engineering, 2018, 18(4): 041001-14. 13. Ming Z, Wang G, Yan Y, et al. Ontology-based representation of design decision hierarchies[J]. ASME Journal of Computing and Information Science in Engineering, 2018, 18(1): 011001-12. 14. Wang R, Nellippallil A B, Wang G, Yan Y, et al. Systematic design space exploration using a template-based ontological method. Advanced Engineering Informatics, 2018, 36: 163-177. 15. Ming Z, Zeng C, Wang G, Yan Y, et al. Ontology-based module selection in the design of reconfigurable machine tools [J]. Journal of Intelligent Manufacturing, 2018, 1-17. DOI: 0.1007/s10845-018-1446-3 16. Huang S, Wang G, Shang X, Yan Y. Reconfiguration point decision method based on dynamic complexity for reconfigurable manufacturing system (RMS) [J]. Journal of Intelligent Manufacturing, 2018, 29(5): 1031-43. 17. Ming Z, Wang G, Yan Y, et al. An ontology for reusable and executable decision templates[J]. ASME Journal of Computing and Information Science in Engineering, 2017, 17(3): 031008-13. 18. Ming Z, Yan Y, Wang G, et al. Ontology-based executable design decision template representation and reuse [J]. AI EDAM - Artificial Intelligence for Engineering Design Analysis and Manufacturing, 2016, 30(4): 390-405. 二、代表性科研项目 1. 国家自然科学基金面上,多尺度产品基因驱动的设计过程与知识联动机制及方法研究,2014-2017 2. 国防基础科研,分布式智力资源驱动的XXXX创新设计技术,2010-2013 3. 北京市国际科技合作专项,人车协同与智能决策国际联合实验室建设,2019-2021 |
|||
成果及荣誉 |
|||
【1】国防科技进步奖一等奖(1,7) 【2】国防科技进步奖二等奖(4) 【3】国防科技进步奖三等奖(1) |